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Defocusing regimes of nonlinear waves in media with negative dispersion
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Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with
mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this
equation defined at the so-called critical dimension cannot collapse in finite time in the sense that their
transverse (anomalously dispersing) and longitudinal (normally dispersing) extensions never vanish. Solutions
defined at the supercritical dimension are proved to exhibit a nonvanishing mean longitudinal size, and cannot
transversally collapse if they are assumed to shrink along each spatial direction.

PACS number(s): 42.25.Bs, 42.65.Jx, 52.35.Mw

The nonlinear Schrodinger equation (NSE)

o =0 1
l&t wij&x,-a’?xj f(lul*u=0, 1)

u=u(x,t), xeRP, i,j=1,...,D,

is a generic equation which governs the dynamics of the
envelope u(x,t) of weakly nonlinear dispersive waves that
propagate in a comoving frame with the group velocity
Vo=V |=(dw/dk) (ko) and with the dispersion coefficients
w,-j=%(z92w/0k,»o'?kj)(k0). Here, w(ky) and Kk, are the fre-
quency and the wave vector of the carrier wave, respectively,
D denotes the number of space dimensions, and the nonlin-
ear frequency shift Aw=f(Ju|?) in Eq. (1) is assumed to
depend locally on the wave intensity |u|?. By convention,
repeated subscripts imply summation. Equation (1) arises in
a wide variety of contexts, such as nonlinear optics and
plasma physics [1-4], when the characteristic time of the
intensity variation remains greater than the characteristic re-
laxation time of the low-frequency fluctuations induced by
the high-frequency carrier wave. For example, for an optical
Kerr medium, the nonlinear term of Eq. (1), related to the
intensity-dependent refractive index of the medium, reduces
to f(Ju|?)<|u|?. In isotropic media [ = w(|k|)], the tensor
w;; can be represented in the form

wij:(Ug/Zk)(5ij—kik,-/k2)+w"k,-kj/(Zkz), 2)

where ”=3>w/dk?|. The first term in this expression is

responsible for the wave diffraction in the transverse plane
orthogonal to the carrier wave vector Kg||v,. Usually, this
term is positive definite and yields the transverse Laplacian
in Eq. (1). The second term in (2) models the dispersive
broadening of the wave packet and may exhibit both positive
and negative signs: in nonlinear optics, the case w”>0 cor-
responds to the so-called anomalous dispersion, and " <0
to the normal dispersion. In this context, the space-time vari-
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ables z (Z|ky) and ¢ are often inverted: when looking at
structures evolving in the group velocity frame
t—t—z/v,, z—z, the variable ¢ in (1) refers to the propa-
gation variable, while z plays the role of a retarded time [2].
In addition, Eq. (1) also generally governs the propagation of
nonlinear waves in anisotropic media, as is the case of self-
focusing waves in magnetized plasmas [3]. When transform-
ing the operator L = w; j(az/ dx;0x;) into a canonical form by
a rotation of the coordinate system and rescaling the vari-
ables and field, Eq. (1) reads

idu+g*a 0+ f(lul*)u=0. 3)

In Eq. (3), the new dispersion operator gf"ajakz Vi+sV2:
(9;=3/9x’) contains a diagonal metric tensor of components
g’*, with D, elements equal to +1, corresponding to the
transverse space vector r, , and with D, elements of value
s==*1, corresponding to the longitudinal one z, so that
D=D,+D,.

The nature of the nonlinear interaction significantly de-
pends on the signs of both the dispersion coefficient s and
the nonlinear frequency shift f(|u|?). For s=+1, Eq. (1) is
called the elliptic nonlinear Schrodinger equation (ENSE)
and possesses blowing-up solutions for certain classes of ini-
tial data u(x,0): as reviewed in [5], blowup may occur when
the potential U= — f(|u|?) in (3) is negative and obeys the
requirement

(D+2>fF(lulz)destf(lu|2>|u|2df’x )

with F(v)= [yf(w)dw. Henceforth assuming this, a suffi-
cient condition for blowup is that the Hamiltonian integral

H=J ajugjkﬁku*de-—J’F(|u[2)de, 5)

which is a constant of motion for Eq. (3), has to be negative.
As is well known, the mathematical proof of a finite-time
blowup results from the vanishing of the mean square
radius—or virial—integral 1(¢)= [x?|u|?>dPx at a finite time
t=t,., leading thereby to the divergence of the gradient norm
together with the divergence of the amplitude |u| as t—1..
One has, however, to remember that the time at which
|u|— -+ can be smaller than ¢., which indicates that
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blowup occurs before 1(t) reaches zero. Conversely, a non-
vanishing I(¢) does not, strictly speaking, guarantee the ab-
sence of blowup. Nevertheless, the vanishing of /(¢) in the
context of ENSE has above all a physical meaning: it em-
phasizes the local concentration of the intensity at the center,
which is responsible for the occurrence of a singularity and
thus promotes the collapse of localized wave fields. Collapse
is then connected with the attractive character of the self-
interaction of waves along each spatial direction. So, from a
physical viewpoint, the behavior of the virial integral is more
meaningful than a mathematical argument showing—or
not—the existence of blowup. In the following, we will
hence regard the nonvanishing of virial-type integrals as be-
ing a signature of the absence of a “physical” collapse in the
sense given above, even though it cannot definitively settle
the question of blowup. Among the nonlinear forms for
which the collapse is possible, we can recall the general
power nonlinearity f(|u|?)=|u|?°, >0, which includes
the cubic NSE for o=1, and for which negative-energy
states of ENSE self-focus and blow up in finite time when D
is larger than or equal to the so-called critical value 2/o.

When s=—1, Eq. (1) is called the hyperbolic nonlinear
Schrodinger equation (HNSE) and the nature of the nonlin-
ear interaction deeply differs from the elliptic case, in the
sense that a compression of the wave form in the transverse
plane may be counteracted by a repulsion along the z axis.
During the last decade, this problem was a subject of inten-
sive study [2—9]. Nevertheless, the description of such non-
linear regimes is basically an open problem, since apart from
these studies, to our knowledge no thorough investigations of
the global behavior of multidimensional solutions to HNSE
are available so far. The present work is devoted to establish-
ing time-dependent estimates governing the evolution of
u(x,t), when the solution, assumed to exist at least locally in
time, evolves from an initially localized-in-space function.
By means of two virial-type identities, the time evolutions of
localized wave packets governed by HNSE are described at
both the critical (D =2/c0) and supercritical (D>2/c) di-
mensions for a power nonlinearity. We show that no collapse
can occur at the critical dimension and that the longitudinal
extension of the solution never reaches zero for any D.
Moreover, in the supercritical case, we demonstrate that a
transverse self-focusing cannot be achieved by a collapse
when assuming that the mean longitudinal size of u(x,?)
decreases in time.

Before proceeding, we prove that nonzero localized sta-
tionary solutions of (3), defined as u(x,t)= ¢(x)e’™, cannot
exist for s= — 1. We argue by contradiction and suppose that
¢(x) is a nonzero localized solution that satisfies the differ-
ential equation

—Np+Vip—Vip+f(|p|>)p=0. (6)

We multiply (6) by (r, -V, ¢*) and by (z-V,¢*), then in-
tegrate the real part of the resulting equations to get

Ml3+(1 =209, #l3- 1963 [ F(aPraPe=0,
(M
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Nl +1V, g3 - (1-2/D)|V.¢l3~ f F(|¢|*)dPx=0,
(8)

where ||gll,=(|g|?d"x)""? denotes the standard L? norm.
Subtracting Eq. (8) from Eq. (7) gives [V, ¢|3
=—(D, /D,)||V,|3, which is incompatible with the posi-
tiveness of norms. The same proof can be extended to trav-
eling wave solutions (see the recent paper [6]). Even if it
displays that the most ’simple’” solutions to HNSE exhibit a
natural property of unlocalized structures, this result does not
prevent time-dependent solutions u(x,t) from remaining lo-
calized, at least in a finite time interval. In order to follow the
time evolution of the spatial extensions of u(x,t), let us
introduce two quantities, denoted by 7, (£)= fr? |u|?dPx and
L(t)=[z%|u|?dPx, respectively, which, normalized by the
mass N= [|u|?dx, represent the transverse and longitudinal
mean square radius of a localized structure. Straightforward
calculations, following [10,5], lead to two virial-type identi-
ties,

iL(t)=4[2||Vlu||%+le [F(lul?-)—|u|2f<|u|2>]de},
)

iz(t>=4[2lwzu|!%—sz [F(Iulz)—Iulzf(lulz)]dl’x].
(10)

For a power-law nonlinearity f(|u|?)=|u|?*" (¢>0), the
nonlinear potential integrals in Egs. (9) and (10) simply re-
duce to

| U~ a1 = - gy an

To describe the evolution of 7, (¢) and 7,(¢), we now inte-
grate by parts the L2 norm of any L2-integrable function g
and apply the Schwarz inequality to obtain the key inequality

2 .
lglz=< 5-IViglalx'glz.  i=(L.2), (12)
2

which resembles the Heisenberg uncertainty relations, when
it is normalized by the “mass” ||g||5. Then, decomposing the
wave field u(x,t) as u(x,t)=A(x,t)e'*™?)  we estimate
separately each contribution of the gradient norm

IVadllz=1V.Al3+]AV 03 (13)

Applying the inequality (12) to the first term of the right-
hand side (RHS) of (13) immediately gives
IVAl3=(D,;/2)2N%/1; with I,(t)=fx?u|?dPx. The last
term of (13) can be bounded as AV, ¢|3=(I;)%/(161;). This
estimation follows after using the identity
9 (t)=4€, x'A*V ;0dPx with €, =1 and €,=—1 and ap-
plying the Schwarz inequality to this integral. By so doing,
we finally get the bound of the gradient norm from below,

IV ull3=(D/2)2N?/1;+ (1,)%/(161;) (14)
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(see a similar treatment in [11]). We now prove that under
the requirement (4), the vanishing of the longitudinal exten-
sion of u(x,t) along the z direction is not possible.

(a) Absence of a longitudinal collapse for all space di-
mensions. First, we notice that since I,(¢) is positive, the
vanishing of this integral at a hypothetical time ¢, would
necessarily imply that 7,(¢) should decrease near ¢, other-
wise the complementary situation /,=0 would immediately
lead to the wanted result. For treating the relevant case
iz< 0, we retain the estimate

1,>8]V_ul (15)
from Eq. (10), where the nonlinear integrals form a positive
contribution by virtue of (4), and apply the bound (14) to get

073 O/B_Cz
aB/é( ), 2 )—2—32,

B>— (16)
with B(t)=I,(t) and C=—D,N. Inequality (16) describes
the motion of a particle moving under the action of a poten-
tial whose effective force —3%4/3B is stronger than C?/B3.
Such a repulsive potential pushes the particle out from the
center B=0 towards large values of B and hereby prevents
the particle from reaching the value B=0. To show the ab-
sence of a longitudinal collapse, we multiply both sides of
(16) by B<0 (since 1,<0) and obtain after a simple integra-
tion over time:

B>+ C?/B?’<#(0)=[B(0)]*+C¥[B(0)]%, (17)

where the “initial” instant t=0 here refers to the moment
when I, starts to decrease. As &(0) remains finite, the limit
B—0 is strictly forbidden in that case. The minimum exten-
sion of the solution u(x,t) along the axis of normal disper-
sion is then given by B,Zni,,=lz’m,-,,= C?/&(0). As I(¢) never
vanishes, we can multiply (15) by 7, and apply the inequality
(12) with g=u to get (d*/dt*)(I*)=21,1,>4C?, implying
a spreading of I,(t)=1}(¢)~¢ in the limit — + o, This dy-
namics indicates that 7,(¢#) must finally increase in an exten-
sion regime /,>0 for which the estimate (16) strengthens the
asymptotic divergence of I,(t) with I(¢)>I}(¢)~t* as
t—+% since B(t)>B(0)t+B(0). The behavior of the
characteristic longitudinal size \/I_Z of the wave field is thus
to grow at least linearly in time. Note that the previous result
holds independently of the space dimension D. This means
that the spatial distribution of the wave field tends to displace
in the longitudinal direction, either by dispersing simply
along the z axis, or by moving the maximum of u(x,¢) from
the origin z= 0 towards larger distances z, as observed in the
numerical simulations of Refs. [8,9].

Let us now study the behavior of the transverse mean
square radius I, (¢). As the dynamics of this latter integral
essentially depends on the nonlinear frequency shift Aw, we
will restrain our investigation to power-law nonlinearities
characterized by the potential contribution (11) with a trans-
verse dimension number satisfying D, <2/co. This assump-
tion holds in the situations of physical interest
D, =2, D,=1, regarding the propagation of short optical
pulses in normally dispersive Kerr media with a cubic non-
linearity o=1. We investigate the critical and the supercriti-
cal dimensions, separately.
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(b) Absence of transverse collapse at the critical dimen-
sion D=2/o. Referring to the standard two-dimensional
(2D) situation =1, we here assume D, =D,=1/o. In this
case, we prove that I, (#) never vanishes: first, one sees that
by using (11), Eq. (9) reads

. 1—o0D,/2
1,(6)=8|H+|V ul3+ W”“H%Egi};}
1-0oD;
>4\ H+ |V ul5+ ﬁliulliﬁﬂii}
=4[H+[|V ull3]. (18)

Bounding the transverse gradient norm by employing (14) in
the RHS of (18), we easily find

X>3HX '3+ (3/4)D>N?x 51 (19)

with X(£)=[1,(¢)]**. When supposing a priori that I, (¢)
could possibly vanish at a given time ¢, this transverse
virial integral should necessarily decrease as t—¢.. Eluding
thus the trivial case X>0 that cannot promote a transverse
collapse, we just consider a decreasing integral X(¢) and
multiply the estimate (19) by X<0 to find

X2—9HX?*+ (9/4)D>N*Xx*P< £(0). (20)

Similarly to the previous case, the constant &”(0) is defined
by the left-hand side (LHS) of the above inequality stated at
the “initial” moment =0 at which 7, (¢) begins to decrease.
Since this constant is ensured to be finite, one sees from the
boundedness of (20) that it is impossible to pass to the limit
X(t)—0, which concludes the proof. Furthermore, as I,
never vanishes, the transverse size of u(x,t) evolves asymp-
totically faster or slower than the longitudinal one depending
on the sign of H. In the critical case D =2/o, relations (9)
and (10) can be combined into the simple form

I,—1,=8H. (21)

A direct integration of (21) then yields I, (t)=1I,(¢)+4H1>
+[I.(0)—1,(0)]t+1,(0)—1,(0), leading to the asymptot-
ics I, ()~1,(t)+4Ht* as t—+oo. When, e.g., H<O, the
latter estimate shows that the mean longitudinal size must
necessarily diverge faster than 2 \/I_ﬁT t as t— + o, These re-
sults, valid for all initial conditions, improve the ones re-
ported in Refs. [3,7,8], where the absence of collapse in the
critical case was definitively established for positive initial
rates ]L(O)BO only.

(c) Absence of transverse collapse in total compression
regimes at the supercritical dimension D>2/o. We now in-
vestigate the supercritical dimension D >2/c for wave fields
characterized by a transverse distribution defined at the criti-
cal dimension number D | =2/0 and an axial one defined for
D,=1/o. We here consider an evolution of the wave field
u(x,t) forced in the so-called “total” compression regime.
By “total” compression, we mean that both the transverse
and longitudinal sizes of the localized wave field are as-
sumed to shrink in space with I, <0 and /,<0. Such con-
straints compress the solution u(x,?) simultaneously in all
spatial directions, which could be believed to promote at
least a transverse collapse. Paradoxically, we show in the
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following that a transverse collapse never occurs in this case.
Making use of the inequality (12) in order to bound the vari-
ous gradient norms, we estimate the virial identities (9) and
(10) as follows :

I, =8H+8||V,ul3=8H+2C%I,, (22)

I=—4H+4|Vul3+4|V,ul3>—4H+C'21,,  (23)

with C' =D N. We then multiply Eq. (22) by 1,<0 and Eq.
(23) by I, <0, add the resulting inequalities, and perform an
integration over time to get

1,1, —8HI,—2C%nl,+4HI, —C'?Inl, < £"(0). (24)

Here, #"(0)<+ is the first integral of motion associated
with the crossed system (22) and (23) and defined by the
LHS of (24) at the initial moment when both I, and I, are
ensured to decrease. Taking next into account that 7,(¢) re-
mains bounded from above by I,(0), by virtue of the re-
quirement 7,<0, and from below by the quantity I, ,,;, de-
fined in point (a), we deduce from the inequality (24) that
I, (t) can never reach zero. Thus, a collapse in the transverse
space cannot appear under these conditions, which could be
thought to privilege it. This result simply indicates that in a
regime where the wave field would self-contract along its
longitudinal axis, a complete shrinking of the field distribu-
tion in the transverse plane cannot be realized. Consequently,
the remaining possibility to promote a transverse collapse
lies in the so-called compression-extension regime, where
the solution still compresses in the transverse space while it
continuously extends in the longitudinal one. From a physi-
cal viewpoint, this situation appears in the cubic case o=1
to be the most dangerous for the occurrence of a transverse
collapse, since it would amount to considering a wave field
stretching along the z axis and therefore ultimately behaving
as a 2D waveguide that could undergo a finite-time collapse.
In this respect, it is worth mentioning that if a transverse
collapse occurred in the 3D case D, =2 and D,=1, it would
cause the divergence of the transverse gradient norm by vir-
tue of the inequality (12), so that the longitudinal gradient
norm should necessarily be bounded from below. This prop-
erty follows from the inequality [ul|;<CNY|V  u|3||V, ul,
obtained by using the Sobolev embedding theorem where C
is some positive constant. After a simple rescaling of the
gradient norms, the best constant Cy,, can be found by the
same way as in [12,13] and it is equal to C,.,,=1/N,. Here
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No(=1894) is the mass of the 3D spherical-symmetric
ground soliton solution ugy(]x|) of the elliptic NSE:
—uy+ Vug+uy=0.

This enables us to show that in the case of a transverse
blowup ||V, ul|3— + as t—¢,, the constancy of the Hamil-
tonian

H=(|V ull3(1 =NV, ull/2N0) = [V ul3
implies that the integral N must exceed the limiting value
N=4N5/|V,ul3. (25)

This criterion can be viewed as a necessary condition for
collapse in the sense that the total mass should be greater
than some critical value defined by the gradient distribution
along z. It can be compared to the critical collapse for the 2D
ENSE when the collapse is possible as the intensity exceeds
some critical value (for details, see, for instance, [12,5]). As
announced above, this criterion also demonstrates a bound
from below of the gradient norm, but not from above, as it
should naturally be required to predict the possible occur-
rence of a transverse collapse from the inequality (22), which
remains unsolved at the present state.

In summary, by using estimates constructed from virial-
type identities, we have shown that for nonlinearities satis-
fying (4), solutions to the hyperbolic nonlinear Schrodinger
equation will asymptotically stretch along their longitudinal
axis. This dynamics is compatible with the property that sta-
tionary solutions to HNSE can only be unlocalized along the
longitudinal direction. Furthermore, for a power-law nonlin-
earity, we have demonstrated the absence of transverse col-
lapse at the critical dimension. This conclusion applies to
supercritical solutions when both of their transverse and lon-
gitudinal mean square radius are assumed to self-contract in
time. These results, even though they do not strictly rule out
the occurrence of a blowup-type singularity, give a strong
indication for the absence of collapsing solutions to the
HNSE. The question of the occurrence of collapse for a
transverse compression accompanied by a longitudinal ex-
tension of the wave field, however, remains open.
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